
RGW	S3:	Features	vs	deep	compatibility

What	lurks	beneath	the	API

RGW	S3:	Features	vs	deep	compatibility

What	lurks	beneath	the	API

Background

• Wrote	(most)	of	RGW	static	website	hosting	on	contract	for	
Dreamhost
• Credit	to	Yehuda	Saleda	for	early	work

• Went	to	work	full-time	for	Dreamhost	in	2015
• Ceph	development	(RGW)	&	operations

• Open	Source
• Gentoo	Linux	core	developer	(since	2003)
• MogileFS	(2007-2013):	LiveJournal’s	open-source	distributed	content	store
• phpMyAdmin	(2001-2003)

Quick	terminology

• S3:	the	protocol	itself
• Specification:	Public	AWS	S3	API	document
• AWS-S3:	shortened	to	AWS
• RGW-S3:	shortened	to	RGW
• S3	API	calls	may	include	specific	features	in	their	requests
• S3	API	calls	may	have	only	immediate	or	persistent	impact

Specification

• Amazon	publishes	a	single	API	specification	as:
• Amazon	Simple	Storage	Service,	API	Reference,	API	Version	

2006-03-01
• The	version	number	has	never	been	bumped
• Document	history	is	a	high-level	summary	only
• No	public	itemized	list	of	changes	known

S3	Feature	dimensions

• Storage:	configured	per-object,	persistent
• ACL,	Expiration,	SSE,	Storage	Classes,	Tagging,	Versioning	

• Access:	specific	to	the	upload/download	process
• Accelerate,	Browser	POST,	CORS,	Policy,	requestPayment,	STS,	torrent,	website

• Services:	interact	with	objects	some	time	later
• Analytics,	Inventory,	Lifecycle,	Logging,	Metrics,	Notification,	Replication

Features:	AWS	vs	RGW

● The “Features Support” of the main RGW document is
high-level only

● The “RADOS Gateway S3 API Compliance” page is very
out of date

● Protocol testing in the s3-tests repo “best” indicator of
coverage

Features:	AWS	vs	RGW	(Jewel)

• Storage:	configured	per-object,	persistent
• ACL,	Expiration,	SSE,	Storage	Classes**,	Tagging, Versioning	

• Access:	specific	to	the	upload/download	process
• Accelerate,	Browser	POST,	CORS,	Policy,	requestPayment,	STS,	torrent, website

• Services:	interact	with	objects	some	time	later
• Analytics,	Inventory,	Lifecycle,	Logging,	Metrics,	Notification,	Replication

Features:	AWS	vs	RGW	(Luminous)

• Storage:	configured	per-object,	persistent
• ACL,	Expiration,	SSE, Storage	Classes**,	Tagging, Versioning	

• Access:	specific	to	the	upload/download	process
• Accelerate,	Browser	POST,	CORS,	Policy, requestPayment, STS,	torrent, website

• Services:	interact	with	objects	some	time	later
• Analytics,	Inventory, Lifecycle,	Logging,	Metrics,	Notification,	Replication

Features:	AWS	vs	RGW	(Mimic)

• Storage:	configured	per-object,	persistent
• ACL,	Expiration,	SSE, Storage	Classes**, Tagging, Versioning	

• Access:	specific	to	the	upload/download	process
• Accelerate,	Browser	POST,	CORS,	Policy,	requestPayment,	STS,	torrent,	website

• Services:	interact	with	objects	some	time	later
• Analytics,	Inventory, Lifecycle,	Logging,	Metrics,	Notification,	Replication

s3-tests

● Good	for	basic	feature	testing
● Slow!	Takes	25+	minutes	for	a	single	complete	run
● Testing	in	corner	cases	lags	even	further
● No	explicit	coverage	for	data	written	under	OLD	Ceph/RGW	

versions	for	upgrades

S3	API	Usage

• Prioritizing	S3	features	by	customer	request	&	usage
• Requests	for	SSE

• Need	a	way	to	measure	existing	feature	usage
• Spoiler:	cool	stuff	doesn’t	get	used

S3	API	Usage	(what)

• Need	request	&	headers	to	parse	non-POST
• Need	entire	body	as	well	for	some	POST	requests
• RGW	is	already	parsing	it	(but	spread	out	all	over	codebase)

S3	API	Usage	(where)

• Not	in	RGW	itself	at	present	:-(
• Choices!

• Interception	in	HTTP	reverse-proxy/load-balancer
• Parse	from	logs:	ops,	or	raw	rgw/civetweb

• Control	fields	in	Browser	POST	payload	hard	to	capture	that	
early

S3	API	Usage	(how)

● Custom	HAProxy	1.7	Lua	plugin
○ Initially	written	to	fairly	rate-limit	AccessKey

● Parses	request	line	&	headers	BEFORE	RGW
● Does	not	have	access	to	request	body
● Improvements:

○ “Standardized”	operations	names	in	the	logs	(all	of	them)?
○ How	to	track	feature	usage	in	API	calls?	SSE?	Metadata?	Tagging?
○ Has	to	parse	the	RGW	response	as	well	for	logging

S3	API	Usage	(numbers)

• Caveat:	these	are	statistics	based	on	Dreamhost’s	public	cloud	
offering,	which	targets	low-skill	users	&	existing	clients

• Clients	may	consume	S3	as	a	product	(and	use	features	by	
design)

• SSE:	CloudBerry	Backup,	Duplicati,	QNAP

S3	API	Usage	(numbers)

Specification	vs	AWS	vs	RGW

• Subtle	differences	in	behavior
• AWS	is	more	lenient	than	the	Specification
• AWS	behavior	differs	slightly	between	regions
• RGW	is	based	mostly	on	the	Specification

• Plus	observed	AWS	behavior
• Plus	special	RGW-only	logic

Spec/AWS/RGW:	CreateBucket

● CreateBucket,	of	an	already	existing	bucket,	owned	by	you
● us-east-1: 200 OK
● Other	AWS	regions:	409 BucketAlreadyOwnedByYou
● RGW:	200 OK

○ Some	clients	mishandle	BOTH	potential	responses
● This	detail	is	in	the	specification,	but	you	need	to	read	carefully

Spec/AWS/RGW:	Content-Length	(1)

• Should	every	HTTP	PUT	request	include	a	Content-Length	
header?

Spec/AWS/RGW:	Content-Length	(2)

• Should	every	HTTP	PUT	request	include	a	Content-Length	
header?

• Specification:	yes**
• RGW:	Jewel	&	earlier:	mostly
• RGW:	Luminous:	yes
• S3:	Only	if	length	non-zero!

Spec/AWS/RGW:	Content-Length	(3)

• Object	PUT ?acl operation	has	a	case	where	there	is	no	
body,	because	everything	is	in	the	HTTP	headers.

• RGW	started	to	require	more	Content-Length	because	it	made	
code	easier

• Old	Amazon-official	S3	clients	did	NOT	include	Content-Length	
header	unless	there	was	a	body

• Patched	in	load-balancer,	not	yet	RGW

Spec/AWS/RGW:	Regions	vs	Signatures

• How	many	user	reports	have	you	seen	of	new	S3	clients	that	
don’t	work	quite	right?

• Some	clients	have	hard-coded	logic	that	depends	on	the	exact	
name	of	the	region
• us-east-1	gets	special	treatment	again

• AWS4	signature	includes	the	region
• AWS	signature	calculation	bugs

• Multipart	&	POST
• Adjcent	spaces	stripping

● How	strict	should	RGW	S3	really	be?
● Should	RGW	follow	the	Robustness	Principle	(Postel’s	Law)?
● The	Content-Length	change	broke	clients

○ Possibly	for	the	better
○ But	was	unexpected	behavior	in	upgrade

● Need	tests	to	replicate	old	client	behavior
○ Without	the	HTTP	library	interfering!

● Some	HTTP/1.0	behaviors	still	exist	in	AWS
○ Depends	on	region
○ Path-encoded	hostname	without	Host	header

RGW	strictness

Impact	of	a	missing	feature

● Will	the	lack	of	a	feature	cause	problems	for	later	RGW	
versions?

● Protocol	design:
○ No	immediate	feedback	mechanisms	to	confirm	some	features	were	used!
○ Can	re-query	most	to	verify
○ Eventual	consistency	may	interfere

Brief	SSE	case	study	(1)

● Jewel	&	earlier
○ What	happens	if	you	set	SSE	headers?

Brief	SSE	case	study	(2)

● Jewel	&	earlier
○ Data	stored	unencrypted
○ Client	may	have	associated	key	stored	externally

Brief	SSE	case	study	(3)

● Jewel	&	earlier
○ Data	stored	unencrypted
○ Client	may	have	associated	key	stored	externally

● Luminous
○ New	SSE	uploads	will	be	encrypted	correctly
○ Fetches	of	old	data	break	if	SSE	headers	set!

TODO	Client	choices...

• TODO

•Will those differences negatively impact S3 client
implementations, and are they intentional?
• What happens when customers use unexpected clients & features?
• Old & undermaintained clients might not get new feature support
• BUT
• Bugs do arise in new Ceph releases as well as new client releases
• Multipart uploads have lots of nuanced corners
• CyberDuck 6.2 (TODO: verify number) broke client

Internal	compatibility	(1)

● What’s	the	oldest	RGW	data	you	have	in	production?
● Have	you	verified	you	can	read	it	back?
● End-to-end?

Internal	compatibility	(2)

● Intact,	complete?
● Head/tail	bugs	in	multipart
● Truncation	at	boundaries
● Checking	the	correct	pool!
● #23232:	RGWCopyObj	silently	corrupts	the	object	that	was	

multipart-uploaded	in	SSE-C
● Previous	silent	write	discards	have	also	happened

