ceph

@ |z
Cew l'l

CEPHALOCON APAC 2018
THE FUTURE OF STORAGE

22-23 March 2018 | BEIJING

Global deduplication for Ceph

Myoungwon Oh
SW-Defined Storage Lab

SK Telecom

@ | Tz

CephthEH# K EEETETY

ceph
1. Why do we need Global dedup ?

2. Ceph deduplication design

3. Ceph extensible tier (implementation)
4. Upstream

5. Plan & issues

O SK with software-defined storage

ceph

)

CephdEHEK

[T

EEEITERY

I
SK’,ﬁynix

|
SK%?elecom

L
’ SKhT?road band

2 4
i

Flash device]

[High Performance, Low Latency, SLA

® gy, .

ceph

Scalable, Available,
Reliable, Unified Interface,
Open Platform

All-flash Ceph !

Low Latency

High Performance,

i
SKh:elecom |

lution for
- Private Cloud for Developers

Storage

4
l:
[]

() A5
Cephsh?lzl MR ’ Tll

()) Why do we need global dedup:
ceph

* Up to 40% of total storage space can be saved via deduplication (in our private cloud)
e Local dedup (in a block device level) can not cover whole data reduction in terms of
Cluster-wide

Data A Data A

<] [0

2) Global deduplication

Data A

] 05 O o

1) Local deduplication

Data A

A) Design comparison

4 OSD

8 OSD

12 0OSD

16 OSD

Local Dedup

15.5%

8.1%

5.5%

4.1%

Global Dedup

50%

50%

50%

50%

B) FIO workload with deduplication ratio of 50% (32KB block size)

m m”ﬂ o -:
Cephsp?il%irz l Tll

@) Design challenges
ceph
* Which implementation is the most appropriate for shared-nothing scale-out storage?

= Applicable to existing source
= Transparent to the application

= Efficient metadata management

e How to manage dedup metadata?

 What is the most appropriate dedup method (e.g., inline or post)?

= Performance

= |/O cost

@ | rzamiz
. CephFREHEX
) Design 1: Double distribution has
ceph
e Do we need a new MDS (metadata server) for dedup?
= Shared-nothing filesystem is scalable because there is no MDS.
= MDS does not fit the Shared-nothing design
= MDS needs additional I/Os to complete I/O requests
= E.g.,, metadata query to MDS
* How to do rebalance if we add MDS ?

= Synchronization between MDSs

Design 1: Double distribution hast

ceph

@ | 7

CephthEH# K EEETETY

e Can we implement dedup without MDS?

= Yes, CAS (content-addressable storage) pool with double distribution hash!

. (OID, Data) — chunking and fingerprinting -> (OID, Offests[], FPs[]) - FP is new OID -> (FP, Data)

. Pros

= Cons

No central MDS

|Client1 || Client2 || Client3 |

Applicable to existing source without major modifications.

Transparent to the application ‘Clientl ‘ ‘Client2‘ ‘Client_’; ‘ |OID - 1| |OID - 2| |OID - 3’|
Efficient metadata management |OID - 1||OID 2| |OID 3| Hash (1)< [Hash (2)=| [Hash (3)=

_ o _ OID =K | |0ID =K | [0ID =K
Reusing existing architecture]

Hash algorlthm ‘ Hash algorithm ‘

lhllmnliml iﬁﬁﬁﬁﬁfﬁj

(a) An ordinary OID-based (b) A content-hashed OID-based
Distributed Storage. Distributed Storage.

. DH, recovery, rebalance, data placement

I/O redirection (need a translation layer)

L X 4

l:l'
I3

() A5
Cephgﬁ?zl?ilz maanw .’

Design 2: Self-contained object 3
ceph deduplication

e External metadata structure needs additional complex linking between

deduplication metadata and existing scale-out storage system

. . 1. Find dirty metadata object
* Self-contained object can be answer which contains dirty chunks
from the dirty object ID list.
= Dedup metadata is included in the original object 2. Find the dirty chunk ID from the
dirty metadata object's chunk
Client Object foo map.
Object Size = 4MB 3. The deduplication engine
Chunk Size = 1MB generate a chunk object and
, A single chunk i
Base Tier \ 4 foo-object(has manifest) . p |sert]: It tho trlle Chulnl(hpoc;]l' \
CD {0— 32K, fxc039 . In : e chunk poo ' ec urT
32 — 64K, Dxc045 object generated in step 3 is
64 — 128K, fZcOy9} placed
Post—processing 5. Ac:d reference chnt .
Dedup Tier il Objects (Chunked object) . 'Vr\‘”‘]’rm?;'onhto tk € ‘?:’Jectt't)
OID: fxc039, Reference count: 1 : et e dUTE
OID: Dxc045, Reference count: 2 chunk pool e.nds, update the
OID: fZc0y9, Reference count: 4 metadata object's chunk map.

' .|z
@ Implementation: Extensible tier ™™

ceph

* The key structure for extensible tier
struct object_manifest_t {
enum {
TYPE_NONE =0,
object_info_t TYPE_REDIRECT =1,
LIBRADOS TYPE_CHUNKED = 2,
TYPE_DEDUP =3,

CEPH FS

RADOS y

Base pool (SSD) uint8_t type; // redirect, chunked, ...
ghobject_t redirect_target;

map <uint64_t(offset), chunk_info_t>
chunk_map;

.
‘V')

CAS pool .
(Dedup) . * Operations

= Proxy read, write
= Flush, promote

() A5
Cephgﬂ?il?iig m;aa:ﬂze .’

(@) Implementation: write path

g%

ceph
p Base tier (set-redirect or set-chunk)
RBD Handle set_chunk or set_redirect
Client : .
Base tier (post-processing)
3
1 if check eviction limit (all chunks are dirty)

If chunk object Write request is blocked until dirty object is flushed

else
set_chunk (source, target) Handle a write request

else if redirect object
set_redirect(source, target) Eviction limit{chunk case)
Handle a write request a
2]

Write(f 1::‘ ize) : 1. Chunking and write the object /1. Get dirty chunklist
rite(too, offset, size
2. Update chunk_map (clean > dirty) 2. E/vhlIe(Chunkllst.dlrty_chunks())

if (has_old_reference)
decrement old chunk’s reference

Lower Tier | objecter->write(Chunklist[i])
Write chunk data / I++;
Increment reference count }

3. Receive all of the Ack and update chunk’
state (dirty = clean)

@ ’13tmm£§

EEEITERY

CephfhEHEK
() Upstream
ceph
* Proposal
= http://marc.info/?I=ceph-devel&m=148172886923985&w=2
* Design

= http://marc.info/?1=ceph-devel&m=148646542200947 &w=2
= Pad document (with Sage Weil)
* http://pad.ceph.com/p/deduplication _how dedup manifists
» http://pad.ceph.com/p/deduplication how do we store chunk
» http://pad.ceph.com/p/deduplication how do we chunk
» http://pad.ceph.com/p/deduplication how to drive dedup process
* Progress
= o0sd,librados: add manifest, redirect https:/github.com/ceph/ceph/pull/14894

= osd,librados: add manifest, operations for chunked object
https://github.com/ceph/ceph/pull/15482

= osd: flush operations for chunked objects https://github.com/ceph/ceph/pull/19294
= 0sd, librados: add a rados op (TIER_PROMQOTE) https://github.com/ceph/ceph/pull/19362

= WIP: osd: refcount for manifest object (redirect, chunked)
https://github.com/ceph/ceph/pull/19935

@ | 72miz
Plan & |SSU€S CephhE#K

ceph

* Plan (To Do)

» Reference counting methods and data types for redirect and chunk
= Offline fingerprinting and then storing of dedup chunked manifest (whole object or parts of it)
= Dedup processing

= Background dedup worker

= Refcount manager and methods for dedup (http://pad.ceph.com/p/deduplication how do_we_store chunk)
= Fixed-sized backpointers
= Scrub

= Test cases

= [ssues
» Small chunk (< 64 KB)
» Minimizing performance degradation
= Dedup methods (inline?)
= CDC (contents defined chunking)

