
Global	deduplication	for	Ceph

Myoungwon Oh

SW-Defined	Storage	Lab

SK	Telecom



Agenda

1. Why	do	we	need	Global	dedup ?

2. Ceph deduplication	design

3. Ceph extensible	tier	(implementation)

4. Upstream

5. Plan	&	issues



5G

Flash	device
High	Performance,	Low	Latency,	SLA

UHD4
K

Scalable, Available, 
Reliable, Unified Interface, 
Open Platform 

High Performance, 
Low Latency

All-flash	Ceph !

Contribution : QoS, 
Deduplication, etc.

Storage Solution for
- Private Cloud for Developers
- Virtual Desktop Infra

SK	with	software-defined	storage



Why	do	we	need	global	dedup?

A B C D

Data A Data A

A B C D

Data A Data A

1)	Local	deduplication 2)	Global deduplication

4 OSD 8 OSD 12 OSD 16 OSD

Local Dedup 15.5% 8.1% 5.5% 4.1%

Global Dedup 50% 50% 50% 50%

B)	FIO	workload	with	deduplication	ratio	of	50%	(32KB	block	size)

A)	Design	comparison

• Up	to	40%	of	total	storage	space	can	be	saved	via	deduplication	(in	our	private	cloud)
• Local	dedup (in	a	block	device	level)	can	not	cover	whole	data	reduction	in	terms	of	

Cluster-wide



Design	challenges	

• Which	implementation	is	the	most	appropriate	for	shared-nothing	scale-out	storage?
§ Applicable	to	existing	source

§ Transparent	to	the	application

§ Efficient	metadata	management

• How	to	manage	dedup metadata?

• What	is	the	most	appropriate	dedup method	(e.g.,	inline	or	post)?
§ Performance

§ I/O	cost



Design	1:	Double	distribution	hash

• Do	we	need	a	new	MDS	(metadata	server)	for	dedup?
§ Shared-nothing	filesystem	is	scalable	because	there	is	no	MDS.

§ MDS	does	not	fit	the	Shared-nothing	design	

§ MDS	needs	additional	I/Os to	complete	I/O	requests

§ E.g.,	metadata	query	to	MDS

§ How	to	do	rebalance	if	we	add	MDS	?

§ Synchronization	between	MDSs



Design	1:	Double	distribution	hash

• Can	we	implement	dedup without	MDS?

§ Yes,	CAS	(content-addressable	storage)	pool	with	double	distribution	hash!
§ (OID,	Data)	– chunking	and	fingerprinting	->	(OID,	Offests[],	FPs[])	- FP	is	new	OID	->	(FP,	Data)

§ Pros

§ No	central		MDS

§ Applicable	to existing	source without	major	modifications.

§ Transparent	to	the	application	

§ Efficient	metadata	management

§ Reusing	existing	architecture

§ DH,	recovery,	rebalance,	data	placement

§ Cons

§ I/O	redirection	(need	a	translation	layer)



Design	2:	Self-contained	object	for	
deduplication

• External	metadata	structure	needs	additional	complex	linking	between	

deduplication	metadata	and	existing	scale-out	storage	system

• Self-contained	object	can	be	answer

§ Dedup metadata	is	included	in	the	original	object

Metadata
Pool

Chunk Pool

Data
Client

Base	Tier

Dedup Tier

Object	foo
Object	Size	=	4MB
Chunk	Size	=	1MB

Objects	(Chunked	object)
OID:	fxc039 ,	Reference	count:	1
OID:	Dxc045,	Reference	count:	2
OID:	fZc0y9,		Reference	count:	4

foo-object(has	manifest)
{	0	– 32K,	fxc039
32	– 64K,	Dxc045
64	– 128K	,	fZc0y9}

Post-processing

1. Find	dirty	metadata	object	
which	contains	dirty	chunks	
from	the	dirty	object	ID	list.	

2. Find	the	dirty	chunk	ID	from	the	
dirty	metadata	object's	chunk	
map.	

3. The	deduplication	engine	
generate	a	chunk	object	and	
send	it	to	the	chunk	pool.

4. In	the	chunk	pool,	the	chunk	
object	generated	in	step	3	is	
placed

5. Add	reference	count	
information	to	the	object.

6. When	the	chunk	write	at	the	
chunk	pool	ends,	update	the	
metadata	object's	chunk	map.

A	single	chunk



Implementation:	Extensible	tier	

• The	key	structure	for	extensible	tier
struct object_manifest_t {

enum {
TYPE_NONE	=	0,
TYPE_REDIRECT	=	1,		
TYPE_CHUNKED	=	2,
TYPE_DEDUP	=	3,

};
uint8_t	type;		//	redirect,	chunked,	...
ghobject_t redirect_target;
map	<uint64_t(offset),	chunk_info_t>					

chunk_map;
};

• Operations
§ Proxy	read,	write
§ Flush,	promote

object_info_t

obj



Implementation:	write	path

RBD
Client

1. Get dirty chunklist
2. while(Chunklist.dirty_chunks())

{ 
if (has_old_reference)

decrement old chunk’s reference 
objecter->write(Chunklist[i])
i++;

}
3. Receive all of the Ack and update chunk’ 
state (dirty à clean)

Write(foo, offset, size)

if check eviction limit (all chunks are dirty)
Write request is blocked until dirty object is flushed

else
Handle a write request

Base tier (post-processing)

Write chunk data
Increment reference count

Lower Tier 

If chunk object
set_chunk (source, target)

else if redirect object
set_redirect(source, target) 

Handle set_chunk or set_redirect

Base tier (set-redirect or set-chunk)

1

2

3

1. Chunking and write the object
2. Update chunk_map (clean à dirty)

Handle	a	write	request
Eviction	limit	(chunk	case)

4
4



Upstream	

• Proposal
§ http://marc.info/?l=ceph-devel&m=148172886923985&w=2

• Design
§ http://marc.info/?l=ceph-devel&m=148646542200947&w=2
§ Pad document (with Sage Weil)

• http://pad.ceph.com/p/deduplication_how_dedup_manifists
• http://pad.ceph.com/p/deduplication_how_do_we_store_chunk
• http://pad.ceph.com/p/deduplication_how_do_we_chunk
• http://pad.ceph.com/p/deduplication_how_to_drive_dedup_process

• Progress
§ osd,librados: add manifest, redirect https://github.com/ceph/ceph/pull/14894
§ osd,librados: add manifest, operations for chunked object 

https://github.com/ceph/ceph/pull/15482
§ osd: flush operations for chunked objects https://github.com/ceph/ceph/pull/19294
§ osd, librados: add a rados op (TIER_PROMOTE) https://github.com/ceph/ceph/pull/19362
§ WIP: osd: refcount for manifest object (redirect, chunked) 

https://github.com/ceph/ceph/pull/19935



Plan	&	Issues	

• Plan (To Do)
§ Reference counting methods and data types for redirect and chunk
§ Offline fingerprinting and then storing of dedup chunked manifest (whole object or parts of it)
§ Dedup processing

§ Background dedup worker
§ Refcount manager and methods for dedup (http://pad.ceph.com/p/deduplication_how_do_we_store_chunk)

§ Fixed-sized backpointers
§ Scrub

§ Test cases

§ Issues
§ Small chunk (< 64 KB)
§ Minimizing performance degradation
§ Dedup methods (inline?)
§ CDC (contents defined chunking)


