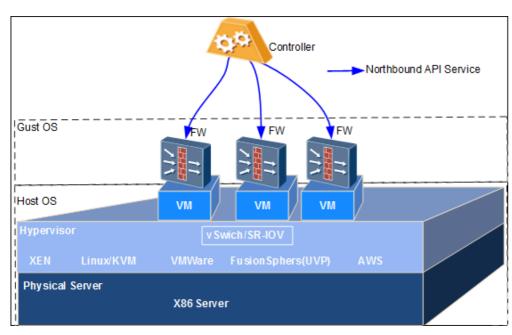


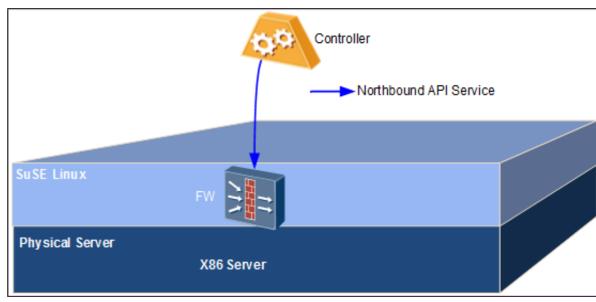
Hyperscan在X86防火墙产品中的应用实践

www.huawei.com

2017.3.8

- □ x86防火墙产品简介
- □ hyperscan的使用
 - □模式编译
 - □Database管理
 - □模式匹配
- □ hyperscan相关诉求汇总





x86防火墙产品简介

华为x86防火墙产品可运行在标准服务器虚拟机上,面向云数据中心及NFV场景,提供全面软件化部署的虚拟网络安全防护。通过软件定义安全来实现安全能力的快速部署。

虚拟化平台部署

X86服务器部署

x86防火墙产品简介

首页 > 产品 > 安全 · > 防火墙及应用安全网关 · > USG6000V ·

USG6000V 虚拟综合业务网关

华为USG6000V(Universal Service Gateway)是基于NFV架构的虚拟综合业务网关,虚拟资源利用率高,资源虚拟化技术支持大量多租户共同使用。产品具备丰富的网关业务能力,如vFW、vIPSec、vLB、vIPS、vAV、vURL过滤等,可根据对虚拟网关的业务需求,按需使用,灵活部署。

USG6000V系列虚拟综合业务网关兼容多种主流虚拟化平台,提供标准的API接口,可以与华为FusionSphere云平台、Agile Controller控制器以及开源的Openstack平台共同构成开放的SDN数据中心解决方案。USG6000V可以与传统硬件设备统一被Agile Controller控制器进行管理,构建统一的智能化云安全平台,实现业务灵活定制,资源弹性扩缩,网络可视化管理,满足企业业务快速上线、变化频繁,运维简单、高效等诉求。

USG6000V

http://e.huawei.com/cn/products/enterprise-networking/security/firewall-gateway/usg6000v

提纲

- □ USG6000V产品简介
- □ hyperscan的使用
 - □模式编译
 - □Database管理
 - □模式匹配
- □ hyperscan相关诉求汇总

hyperscan的使用

- ●使用场景
 - ✓DPI应用识别
 - ✓IPS检测
 - ✓关键字扫描
- ●软硬件环境

CPU: X86

业务多线程工作模式

●Hyperscan版本

V4. 3. 0

libhs. so

模式编译

●规则集编译

Pattern属性: HS_FLAG_CASELESS
HS_FLAG_SOM_LEFTMOST

编译模式: HS_MODE_STREAM
HS_MODE_STREAM + HS_MODE_SOM_HORIZON_SMALL

Pattern规模: 20K+

模式编译

●编译资源占用

database大小: 16MByte(pattern数目7000+)

编译时间: < 25s

峰值内存: 100+MByte

Database管理

- ●规则集尽可能多的拆分成独立的databse
- ●尽量采用EOM的编译模式
- ●各线程独立的scratch空间,用于db更新切换

```
hs_error_t hs_alloc_scratch(const hs_database_t *db, hs_scratch_t **scratch);
```

缺点: Db越多, scratch空间占用越多。

模式匹配

●多线程匹配

各线程独立的scratch空间;

```
hs_error_t hs_alloc_scratch(const hs_database_t *db, hs_scratch_t **scratch);
```

●流模式,跨包匹配

```
hs_error_t hs_scan_stream(hs_stream_t *id, const char *data,
unsigned int length, unsigned int flags,
hs_scratch_t *scratch, match_event_handler onEvent,
void *ctxt);
```

跨包缓存大小无法设置;

模式匹配

●多线程匹配性能

吞吐量单位: Mbps (单核)						
db payload	pattern-01	pattern-02	pattern-03	pattern-04		
payload01	335	1061	1188	2263		
payload02	514	1541	1000	2738		
payload03	549	1904	836	11055		
payload04	472	1397	1126	2361		
payload05	368	1108	1082	4183		
payload06	466	1353	1046	5794		

db payload	pattern-01	pattern-02	pattern-03	pattern-04		
payload01	3388	10469	11450	22324		
payload02	5210	15328	9514	27064		
payload03	5558	17935	7759	108199		
payload04	4805	13245	10648	23150		
payload05	3760	10960	10482	40517		
payload06	4721	13530	9809	55254		

多核性能线性度								
pattern- 01	pattern- 02	pattern- 03	pattern- 04					
10.11	9.87	9. 64	9.86					
10.14	9.95	9. 51	9.88					
10.12	9.42	9. 28	9.79					
10.18	9.48	9.46	9.81					
10.22	9.89	9. 69	9.69					
10.13	10.00	9. 38	9.54					

提纲

- □ USG6000V产品简介
- □ hyperscan的使用
 - □模式编译
 - □Database管理
 - □模式匹配
- □ hyperscan相关诉求汇总

hyperscan相关诉求汇总

●编译峰值内存占用

与pattern规模的关系?

峰值内存估算方法?

●匹配内存占用

scratch空间大小可以查看, stream空间大小查看?

除了scratch和stream以外,其它的内存占用?

单条流的stream大小占用优化?

hyperscan相关诉求汇总

●Database切换

每一个线程创建一个scratch空间, db更新后, scratch是否必须更新?

- ●匹配相关
- 1)命中结果的最大个数限制、配置;
- 2) 指定多个database 匹配;

Thank You

www.huawei.com