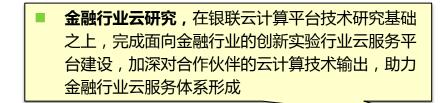


基于开源SDN控制器的金融云网络方案研究

2018 6



银联云计算实践历程

2017

深化应用,实现资源的内聚外联,创新产品、业务、商务模式的加速孵化,实现了对合作伙伴的云计算技术输出

2016

2015

■ **试点应用**,核心关键技术取得突破 ,服务能力较为完善,公司范围内 各部门开始推进云业务试点。

■**国家立项** , 10 月 国家 云计算示范工程项目获 得批准 , 全国 15 家入选 单位中 , 唯一的国有企 业 , 唯一的金融企业

2011

2013

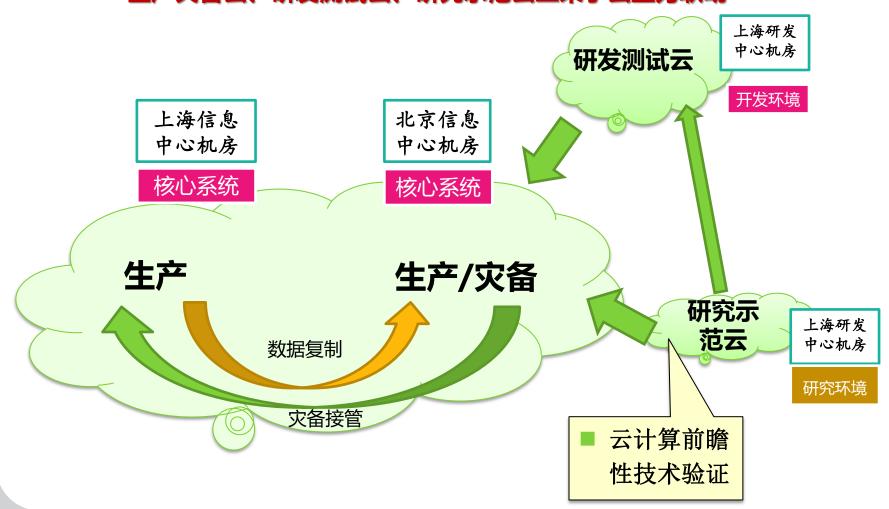
规模应用,公司级重点项目与产品应用系统均选择在云计算平台上部署落地。私有云业已完成建设,技术水平也处于行业先进之列。

2014

原型试用,自主研发的生产云基础平台完成原型建设。

2012

国内最早的金融行业开源云计算生产平台

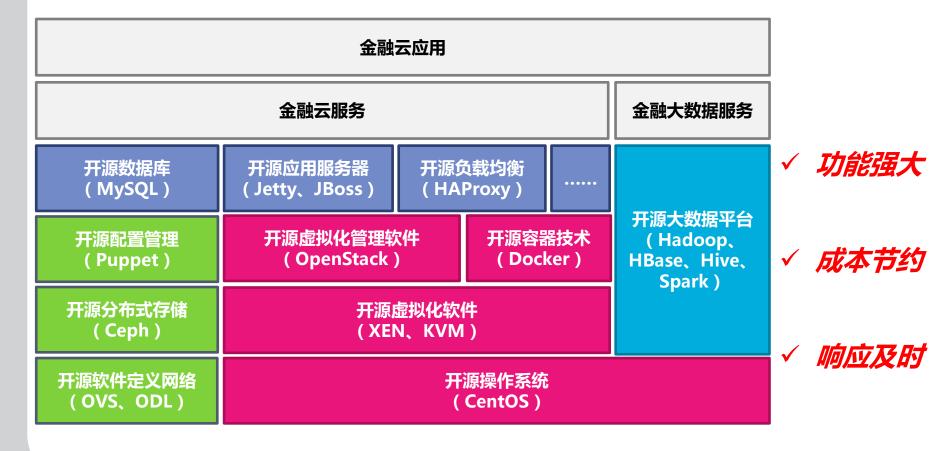


云平台部署情况

生产灾备云、研发测试云、研究示范云三朵子云互为联动

业务应用情况

持卡人服务	大数据业务	新型险种灾备	公有云		
传统收单业务	国际业务	核心产险灾备			
移动支付业务	互联网支付业务	保险-云灾备	银行-技术输出		
银联	内部	外部机构			


- ✓ 银联内部:总/分/子公司业务支撑,云闪付统一APP、移动支付(ApplePay)、银联国际 卡权益等关键应用均基于云平台
- ✓ 外部机构:在银行与保险业的合作伙伴中提供云计算各类服务,形成技术输出初步辐射

银联云技术路线

- 基于业界领先的开源技术和开源软件,自主研发基础平台
- 站在开源技术最前沿,即有继承又有创新

17年关键技术突破

2017年在生产环境实现新一代基于SDN技术的金融云平台应用

> 商业硬件方案:华为

> 开源软件方案:Neutron

OpenStack版本 E版 -> L版

银行业云闪付统一APP承载验证

当前基础设施即服务的技术攻关聚焦网络

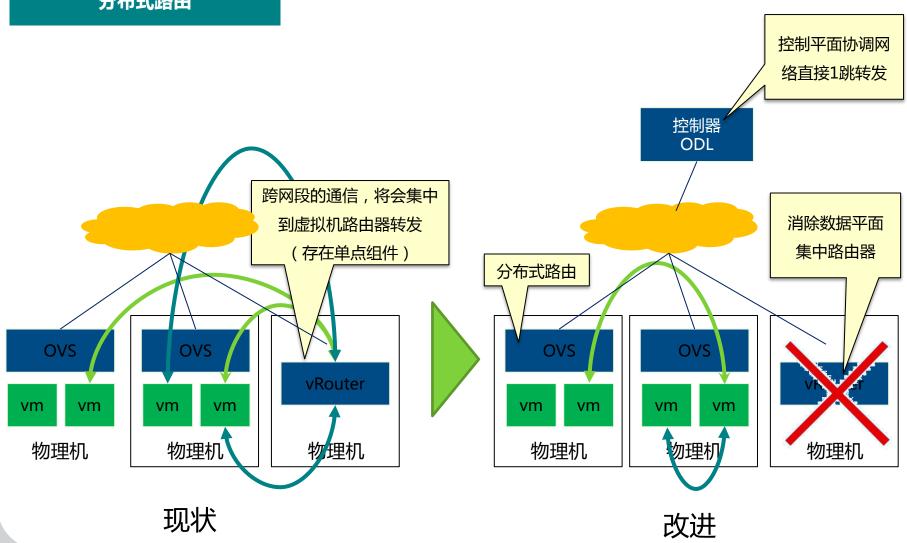
异构SDN区域互联 (RI)

数据中心内各云区域网络一致性架构

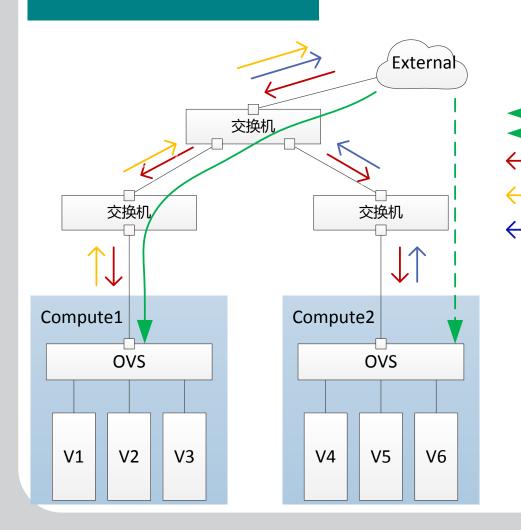
开源SDN控制器 (ODL)

软件SDN技术 的自主优化方案 云网监控 (Hadoop)

SDN技术应用 后网络运维强化



优化点:可靠性

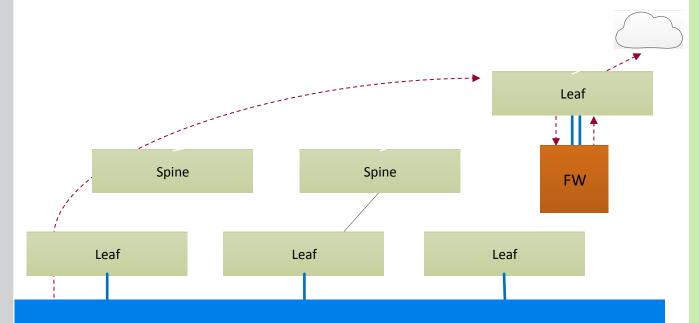


优化点:可靠性

ARP代答

ARP代答实现前 由于软件SDN方案中没有使用 硬件路由器设备,所以整个二层 域都会成为ARP包的广播域,影 响面较广。

ARP代答实现后 由ARP请求发起虚拟机所连接的 OVS中的流表直接进行ARP响应 ,该过程中ARP请求不会进行广 播。

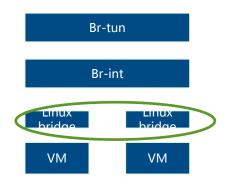


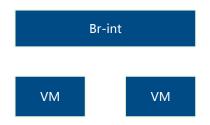
优化点:可靠性

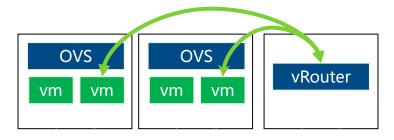
防火墙并联接入

云物理节点集群

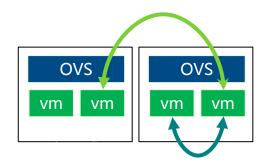
- ✓ 提升防火墙稳定 性,外部网关不 能设置在防火墙 上;
- ✓ 通过引流做到防火墙物理并联,逻辑串联的效果;
- ✓ 防火墙故障流量可不通过防火墙直接出区域;






精简数据传输路径

• 服务器系统网络软件精简



• 网络传输跳数减少

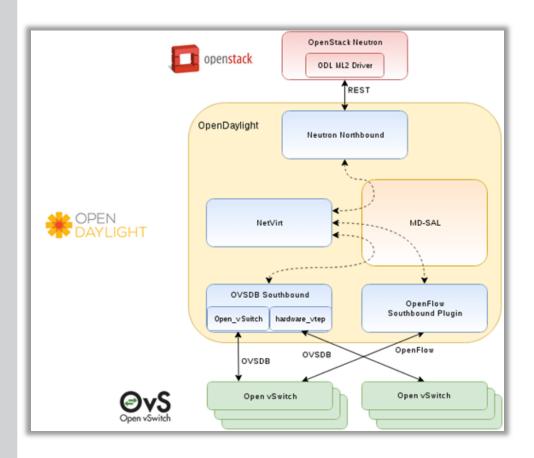
优化点:扩展性

租户资源跨区域互联

核心网络

云区域1

核心网络



11

基于ODL的开源网络架构

管理平面: Openstack

ML2对接

・ 控制平面:ODL

OVSDB & Openflow

· 数据平面:OVS

能力规划

ODL原生能力

分布式路由

分布式ARP代答

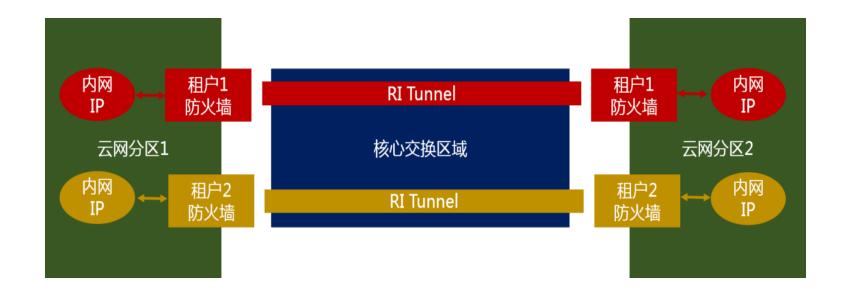
物理机内部链路精简

附加能力

跨区域互联

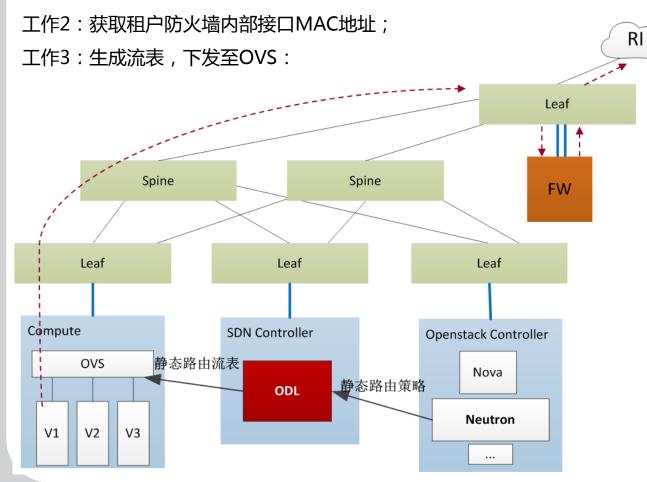
防火墙引流

为实现附加能力,需要对ODL原生能力进行增强



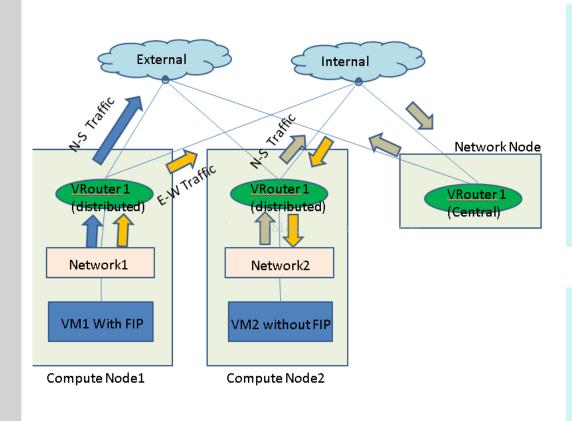
能力实现一:跨区域互联

区域外部对接RI,实现在租户数据在核心交换区域传输


能力实现二:防火墙引流

集成Openstack静态路由功能,通过配置相关静态路由,生成相应的OpenFlow流表,下发至OVS中进行数据传输。

工作1:对接静态路由功能,监控并获取静态路由数据;


table=60,priority=4096,ip ,tun_id=0x1e,nw_src=10. 1.1.0/24,nw_dst=10.2.1.0/ 24,actions=set_field:f8:4a: bf:5a:2b:ea ->eth_dst,dec_ttl,mod_vla n_vid:211,output:3

能力实现三:支持去floating IP的分布式路由

ODL原生分布式路由

区域内部跨Network的东西向流量 ,直接发送;

有floating ip的南北向流量,直接发送;

不支持无floating ip的南北向流量直接发出。

原因分析

- 1.分布式Vrouter外部接口不具备接收外部流量的能力;
- 2.分布式状态下无法对虚拟机位置进 行定位;

能力实现三:支持去floating IP的分布式路由

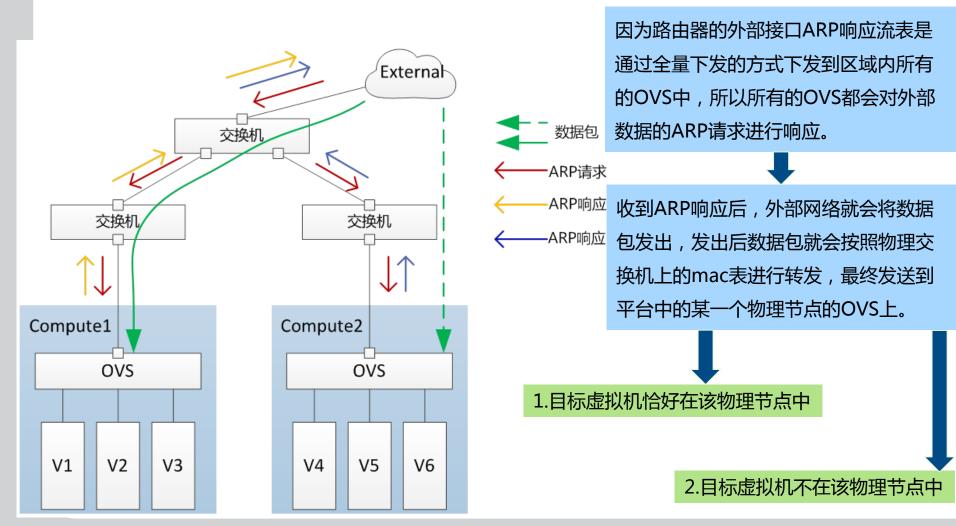
1.实现路由器外部接口对外来流量的数据接收能力

之所以路由器外部接口不能接收外部数据,主要是软件SDN分布式路由在设计的时候,没有赋予该接口的ARP相应的能力,所以第一步就是在ovs中加入外部接口相应ARP请求的流表。流表如下:

```
table=20,priority=1024,arp,arp_tpa=172.16.1.3,arp_op=1 actions=move:NXM_OF_ETH_SRC[]-
>NXM_OF_ETH_DST[],set_field:f8:4a:bf:5a:2b:ea->eth_src,load:0x2-
>NXM_OF_ARP_OP[],move:NXM_NX_ARP_SHA[]->NXM_NX_ARP_THA[],move:NXM_OF_ARP_SPA[]-
>NXM_OF_ARP_TPA[],load:0xf84abf5a2bea->NXM_NX_ARP_SHA[],load:0xac100164-
>NXM_OF_ARP_SPA[],IN_PORT
```

上面的流表的主要作用就是为外部接口构造了一个ARP的相应包,在接收到ARP请求的时候,OVS会根据该流表生成一个ARP相应包,发回给请求方。当请求方接收到该ARP回包后,就会将数据包发送到该接口。

下发方式:全量OVS下发



能力实现三:支持去floating IP的分布式路由

2.虚拟机的定位能力

b

OpenInfra Days

能力实现三:支持去floating IP的分布式路由

目标虚拟机恰好在该物理节点中

table=70,priority=1024,ip,tun_id= 0x5a,nw_dst=10.0.0.3
actions=set_field:fa:16:3e:99:df:47
->eth_dst,goto_table:80(三层转发)
table=110,
tun_id=0x5a,dl_dst=fa:16:3e:99:df:47 actions=output:23(二层转发到虚拟机,23口与是虚拟机连接的ovs的端口)

目标虚拟机不在该物理节点中

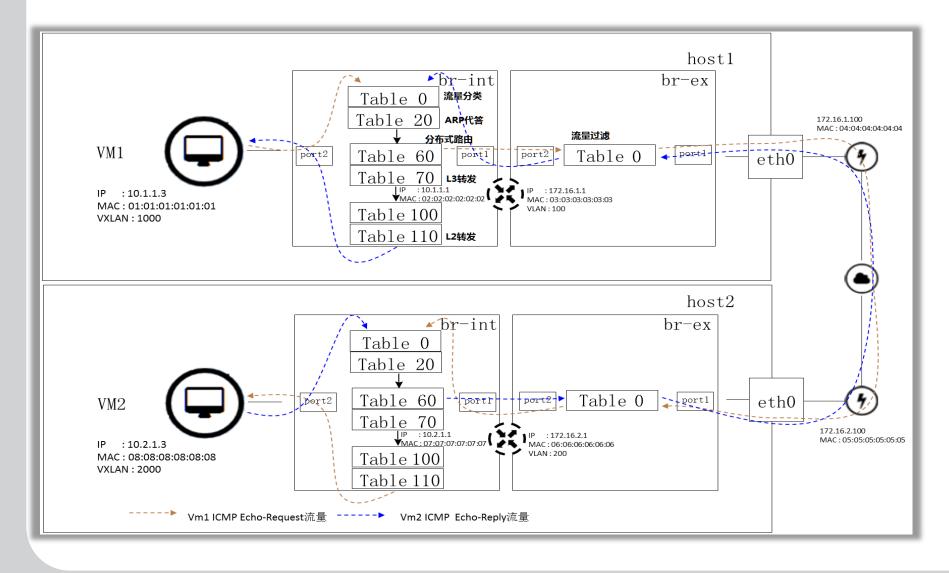
本地物理机流表

table=70,priority=1024,ip,tun_id=0x5a,n w_dst=10.0.0.3

actions=set_field:fa:16:3e:99:df:47->eth_dst,goto_table:80(三层转发)table=110,

tun_id=0x5a,dl_dst=fa:16:3e:99:df:47 actions=output:3(通过Tunnel转发到对应 物理机,后面的output:3代表从3口发出, 3口即为隧道的端口)

对端物理机流表


table=110,

tun_id=0x5a,dl_dst=fa:16:3e:99:df:47 actions=output:23 (二层转发到虚拟机)

性能测试对比:单对虚拟机性能

ODL较Neutron:时延平均降低68.8%;带宽平均提升39.3%

数据包大小		256		512		1024		1456	
场景/测试项目		延时 (ms)	带宽 (G)	延时 (ms)	带宽 (G)	延时 (ms)	带宽 (G)	延时 (ms)	带宽 (G)
同网段同主机	ODL	0.463	28.9	0.449	28.7	0.599	28.8	0.451	29
	Neutro n	1.298	18.5	1.267	19.1	1.016	23.4	1.031	22.9
同网段 不同主 机	ODL	0.92	0.329	1.376	0.778	2.078	1.75	1.861	2.41
	Neutro n	3.765	0.197	4.78	0.501	4.491	1.2	3.613	1.71
跨网段 同主机	ODL	0.437	28.3	0.42	29.2	0.677	27.9	0.356	30.1
	Neutro n	2.989	0.141	3.962	0.321	4.506	0.689	4.793	1.02
跨网段	ODL	1.161	0.34	1.725	0.801	1.869	1.7	1.665	2.32
不同主 机	Neutro n	2.898	0.181	2.929	0.422	3.273	0.907	3.353	1.28
跨区域 通信	ODL	0.696	0.276	0.851	0.706	1.168	1.57	1.235	2.25
	Neutro n	4.246	0.206	4.577	0.551	4.561	1	3.096	1.29

工作总结与后续工作计划

方案尚需完善:

- 1.支持去floating ip方案仍需优化
- 2.控制器高可用不成熟
- 3.L4-L7层方案不完善

后续工作:

已发起跨数据中心多云协同资源管理技术 联合研究课题,希望更多合作伙伴参与

谢谢大家!

