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Why performance matters?
What is performance?

How to improve it?

FRRERE

- Collect
- Represent

- Analyze
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Why performance matters? (intel/

Answer: better user experience

ceph

* Not all activities matter. Requests impact users.
* Not all costs matter. Costs impact responses.
* The requests’ responding costs matter.

Bad: bottom-up strategies.
Approach?

1. Request-oriented distributed tracing.
2. Back-trace from response point.
3. Collect responding costs.
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@ Why performance matters? (inte?
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Collect responding costs.
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Responding costs
* Motivation: Cover the request responding time.
* Consecutive: Single path, and no overlap with each other.
* Category: Execution costs in thread, or waiting costs between threads.

Represent performance of concurrent requests ... ?
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What is performance? ( intel )

ceph
Answer: Latency and throughput
e Latency Throughput
performance

Bad: latency-only analysis, measure requests individually.
Approach?

1. Focus on performance of parallel requests.
2. New visualization for both throughput and latency of requests.
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Represent both latency and throughput
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© What is performance? (i nte)

ceph

Represent performance of parallel requests

Responding costs: One-way, Consecutive, Flatten

|
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® What is performance? ( nte)

ceph
Represent bottleneck

Latencies are not necessarily dependent.

Throughputs are dependent. 2:.:.;.;.‘2 ﬂ

* Lowest throughput -> system throughput.
* Worse: causes wait latencies; most of times, bottleneck

ouT

1000 requests/second
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) How to improve it? (intel)

ceph
Answer: identify bottleneck root causes

Root causes categories:
* Physical: configuration, deployment, hardware
* Logical: parameters, algorithm, architecture
e Other workload

Bad: do optimization subjectively and in blindness.

Approach?

1. Relate each cost with:
* Physical location: host, component, process(service), thread
* Logical location: code, workflow
* Runtime context: request, write length, offset ...
2. Incremental analysis
e Controlled-variables
e Orthogonal methods
» Verification
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How to improve it? lntel)

Incremental & interactive analysis
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request_type int_name lapse

client.4165.0:13 radoswrite

[}

ent.4165.0:13  0.020962

client.4165.0:16 radoswrite

o

ent.4165.0:16  3.224749

client.4165.0:17 radoswrite

=}

ent.4165.0:17 3.219135
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Distributed-tracing:

Visualization:

Interactive frontend:

mmmmmm

Motivation-aligned.

Straightforward
performance representation.

Be analysis-friendly.
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ceph

1. Distributed-tracing: RBD image write

Background: RBD image write data-path

Component Request
Images
RBD
RADOS
Objects
OSD
ObjectStore

Experiment: 3VMs, 4M-SEQ-Write, iodepth=16

In [121]: # 4M-SEQ, 70S, 3 hosts, default
data = "result-r1-0116-050001"
requests_imgr = loader.load(data, drivers.CephRbdimagereq)
requests_objr = loader.load(data, drivers.CephRbdobjectreq)
requests_radosr = loader.load(data, drivers.CephRadosWriteoperation)
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® An example intel)

ceph

2.1. Visualize performance (ImageWriteRequests)

e_isend8|[j3]e12: imagectx_writex_entry -> ireqcomp_finish_entry

Highlight: | I

RBD::ImageWriteRequests

writex

e4[j1]e6: oreq_preomap_send -> oreq_handlepreomap_entry
e_write1[j2]e8: oreq_aiooperate_entry -> oreq_handlewrite_entry

Highlight:

RBD::ObjectRequests

omap operations
aiooperate

005:00.01.763385129
()

e11[j2]e14: osd_enqueueop_entry -> osd_dequeueop_entry
=l ©18[j4]e_mcommit1: rosd_ i
e23[j6]le_rcommit1: rosd_gtrans_entry -> rosd_repopcommit_entry

Highlight:

RADOS::ObjectWriteOperations ., Queue operations
Object store

0 05:00.01.728482818
o
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3.1. Interactive Analysis

Filter by workflow step “j2” (osd enqueueop -> dequeueop)

In [140]: costs = requests_radosr.Intervals.filter byiname("j2")
costs.display lapse_byhosts()
costs.display lapse_byorder()

Physical location: costs by host Logical location: costs by workflow order
lapse lapse
o g N W Lot Py o o — — ] ] w w s
o e n o w = o n o n o n o n o

cephmull -=> cephmull (948)

13pio

3 (1808) +

OSD::do-op

cephmul0 -> cephmul0 (628)

cephmul2 -> cephmul2 (2931) H: —- 1(1795) W—:

2 (904) }
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ceph
3.2. Root cause Analysis (do-op, 4M-SEQ)

mmmmmmm

Parameters:

- osd_op_num_shards

- osd_op_num_threads_per_shard
- pg_num

Highlight: el11[j2]e14: osd_enqueueop_entry -> osd_dequeueop_entry

1 Shard

8 Shards

32 Shards
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Interactive analysis ...

 Lapse, host/thread count distribution

* Cost distribution by hosts, steps ...

* Show longest, most-complex request

* Message heatmap between hosts

* Write balance

 RBD cache validity

e Combination with resource monitoring tools
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Thank you!

mmmmmm

Distributed-tracing
Visualization
Interactive frontend



