ceph

ITZ5mifs

mmmmmm

CEPH

CEPHALOCON APAC 2018
THE FUTURE OF STORAGE

Pinpoint Ceph bottleneck
out of cluster behavior mists

Cheng, Yingxin

cébh

Why performance matters?
What is performance?

How to improve it?

FRRERE

- Collect
- Represent

- Analyze

@ | [TZumiz

CephshE# K

Why performance matters? (intel/

Answer: better user experience

ceph

* Not all activities matter. Requests impact users.
* Not all costs matter. Costs impact responses.
* The requests’ responding costs matter.

Bad: bottom-up strategies.
Approach?

1. Request-oriented distributed tracing.
2. Back-trace from response point.
3. Collect responding costs.

@

Al 55
CephsiEitK ’ T'J":'

@ Why performance matters? (inte?

ceph

Collect responding costs.

client.4235.0:13<<reqs(CephRadosWriteoperation)<<result-r1-0130-100512: <RIns#client.4235.0:13: radoswrite@SUCCESS, 99(main 28) paces, 1 hosts, 13(19) threads, 18 vars, 18 inner, [0.004-0.009(0.009)]> intplot

ceph-0sd:991|td4 el gl

2=000 ercomiEedloBOR
$=000
n0=0000 _e23 B=000

ceph-0s.991td2 ellazgfy— =0 DRl et

B=000 10w rgirel3 el0e—el3

ceph-05d:991td3

ceph-osd:1749]td5

ceph-osd:1749|td4 e_mcgﬂ‘m“mn)
2=0.00 2=0.00
nlel,
ceph-osd:1749]td3 =000 08 A clooyyael3
=000 2=000

hread

7 n37=0.000e27.
o 38 . 137200007
eldo— 500 as %e2l elde—re2l elde-e21 e &1

2120000 €6 b 8009-0 008
&dosd] pidosdl T r24=008mmagpipE "
Bs0t0

]
£ ceph-osd:1749|td2

|t

=000

© ceph-0sd:1749]td1 elgorgfield
B20g0 =000

targy

e rcom@P 198G 1)

ceph-osd:1370|td5

ceph-0sd:1370td4 =000 elfomiiatld £=000 B=0.00
2=000

1300000 _e23 o1

ceph-0sd:1370]td2 eliogyy T3T=0 008 rapry Lozl

fi0:7863|te ==}
b

Js 13279638748
0.009

-

:
¥

fio:7863|td2

MAIN
= — = =

lapse (seconds)

Responding costs
* Motivation: Cover the request responding time.
* Consecutive: Single path, and no overlap with each other.
* Category: Execution costs in thread, or waiting costs between threads.

Represent performance of concurrent requests ... ?

mmmmmm

Cep CPE!?iE

What is performance? (intel)

ceph
Answer: Latency and throughput
e Latency Throughput
performance

Bad: latency-only analysis, measure requests individually.
Approach?

1. Focus on performance of parallel requests.
2. New visualization for both throughput and latency of requests.

@ What is performance?

ceph

EEETETN

Cej phFPEH.tE

(nte)

Represent both latency and throughput

start

—

Throughput
(in) 7

—

R

Latency

| Throughput

requests

latenc \
y N\

| start

Better throughput

seconds(s)

SN

Better latency

requests

Better latency

requests

Better throughput

star\», d

requests

seconds(s)

EEETETN

Cej phFFEI%.tE

© What is performance? (i nte)

ceph

Represent performance of parallel requests

Responding costs: One-way, Consecutive, Flatten

|

mmmmmm

Cej phEPEI?iE

® What is performance? (nte)

ceph
Represent bottleneck

Latencies are not necessarily dependent.

Throughputs are dependent. 2:.:.;.;.‘2 ﬂ

* Lowest throughput -> system throughput.
* Worse: causes wait latencies; most of times, bottleneck

ouT

1000 requests/second

® | rrzamis

CephEHE

) How to improve it? (intel)

ceph
Answer: identify bottleneck root causes

Root causes categories:
* Physical: configuration, deployment, hardware
* Logical: parameters, algorithm, architecture
e Other workload

Bad: do optimization subjectively and in blindness.

Approach?

1. Relate each cost with:
* Physical location: host, component, process(service), thread
* Logical location: code, workflow
* Runtime context: request, write length, offset ...
2. Incremental analysis
e Controlled-variables
e Orthogonal methods
» Verification

@)

CephRE#X

How to improve it? lntel)

Incremental & interactive analysis

EEETETN

@

ceph

request_type int_name lapse

client.4165.0:13 radoswrite

[}

ent.4165.0:13 0.020962

client.4165.0:16 radoswrite

o

ent.4165.0:16 3.224749

client.4165.0:17 radoswrite

=}

ent.4165.0:17 3.219135

—_— Understand Refinements

. \ ° Ove rV i e W] client.4165.0:19 radoswrite
. e Filter _ ,
PY Stat I St I CS client.4165.0:20 radoswrite ent.4165.0:20 3.227235

o N e Search _ o
: ([] V| sSua I |Zat 1oNs . O rga " . o client.4165.0:21 radoswrite client.4165.021 3.961767
: . 1z

. N e F a Cto rom p a Cts client4165.0:23 radoswrite client.4165.0:23 3.955831

client.4165.0:24 radoswrite

client.4165.0:18 radoswrite

o

ent.4165.0:18 3.225363

o

ent.4165.0:19 3.223113

[=X

[=

ent.4165.0:24 3.955428

client.4165.0:25 radoswrite

=X

ent.4165.0:25 3.955479

=}

ent.4165.0:26 3.220556

l -. client.4165.0:26 radoswrite

client.4165.0:27 radoswrite

=X

ent.4165.0:27 3.975425

ceph

Distributed-tracing:

Visualization:

Interactive frontend:

mmmmmm

Motivation-aligned.

Straightforward
performance representation.

Be analysis-friendly.

@

[T 2z
CephfETK

® An example intel)

ceph

1. Distributed-tracing: RBD image write

Background: RBD image write data-path

Component Request
Images
RBD
RADOS
Objects
OSD
ObjectStore

Experiment: 3VMs, 4M-SEQ-Write, iodepth=16

In [121]: # 4M-SEQ, 70S, 3 hosts, default
data = "result-r1-0116-050001"
requests_imgr = loader.load(data, drivers.CephRbdimagereq)
requests_objr = loader.load(data, drivers.CephRbdobjectreq)
requests_radosr = loader.load(data, drivers.CephRadosWriteoperation)

@

CephhEHE ’T'ﬂ

® An example intel)

ceph

2.1. Visualize performance (ImageWriteRequests)

e_isend8|[j3]e12: imagectx_writex_entry -> ireqcomp_finish_entry

Highlight: | I

RBD::ImageWriteRequests

writex

e4[j1]e6: oreq_preomap_send -> oreq_handlepreomap_entry
e_write1[j2]e8: oreq_aiooperate_entry -> oreq_handlewrite_entry

Highlight:

RBD::ObjectRequests

omap operations
aiooperate

005:00.01.763385129
()

e11[j2]e14: osd_enqueueop_entry -> osd_dequeueop_entry
=l ©18[j4]e_mcommit1: rosd_ i
e23[j6]le_rcommit1: rosd_gtrans_entry -> rosd_repopcommit_entry

Highlight:

RADOS::ObjectWriteOperations ., Queue operations
Object store

0 05:00.01.728482818
o

@

. I'
CephhEHE ’T

® An example intel)

ceph

3.1. Interactive Analysis

Filter by workflow step “j2” (osd enqueueop -> dequeueop)

In [140]: costs = requests_radosr.Intervals.filter byiname("j2")
costs.display lapse_byhosts()
costs.display lapse_byorder()

Physical location: costs by host Logical location: costs by workflow order
lapse lapse
o g N W Lot Py o o — —]] w w s
o e n o w = o n o n o n o n o

cephmull -=> cephmull (948)

13pio

3 (1808) +

OSD::do-op

cephmul0 -> cephmul0 (628)

cephmul2 -> cephmul2 (2931) H: —- 1(1795) W—:

2 (904) }

@)

® An example C(Wiwlg'ltel?

ceph
3.2. Root cause Analysis (do-op, 4M-SEQ)

mmmmmmm

Parameters:

- osd_op_num_shards

- osd_op_num_threads_per_shard
- pg_num

Highlight: el11[j2]e14: osd_enqueueop_entry -> osd_dequeueop_entry

1 Shard

8 Shards

32 Shards

) An example
ceph
Interactive analysis ...

 Lapse, host/thread count distribution

* Cost distribution by hosts, steps ...

* Show longest, most-complex request

* Message heatmap between hosts

* Write balance

 RBD cache validity

e Combination with resource monitoring tools

N

ceph

Thank you!

mmmmmm

Distributed-tracing
Visualization
Interactive frontend

