


Gaia, Baidu's Next-Generation Database 

Zhang Wanchuan, Baidu 
zhangwanchuan@baidu.com 



Self intro 

Wanchuan Zhang (张皖川) 
•  2001, University of Wisconsin, Madison，Ph.D（math) & MS（CS） 

•  2001 Oct - 2018 Mar, IBM DB2 (LUW) development, Portland lab & Beijing CDL 

•  2018 Mar，Baidu cloud,  cloud database development 



Agenda 

•  Baidu Cloud RDS (status quo) 
•  New developments of cloud database service  
•  Gaia, Baidu’s next-generation database 
•  Future outlook 



Baidu Cloud RDS 
•  Database service offering on

 Baidu cloud 
•  MySQL 5.6, 5.7 

•  DRDS (distributed tx support) 
•  SCS (Redis based cache service) 

•  SQL server 

•  PostgreSQL  

•  GreenPlum (MPP db for analytics) 

•  Cockroach DB (newSQL, geo
-distributed HTAP database)  

•  MySQL dominates the
 deployments 

Baidu 
Cloud 
RDS 

Postgre 
SQL 

CockRo
ach DB 

SQL 
server 

MySQL DRDS 

SCS 

GreenPlu
m 



Current arch for baidu cloud db 

SQL(RW) 

Cache 

TX Mgr binlog SQL(RO) 

Cache 

TX Mgr 

•  Monolithic  
•  Data on local disk 
•  HA through logical replication 
•  Offload read to replicas 

VM VM 

Log/dirty pages page page Log/dirty pages 



Pain points 
•  No storage multi-tenancy 

•  Low disk utilization (overall
 usage <= 30%) 

•  Little elasticity, need to
 redistribute data to scale 

•  Slow replica deployment  
•  Capacity change hard 
•  Configuration change hard 

•  HA not sufficient 
•  Replication lag 

•  Fast recovery from failure?  
•  Zero data loss ?  

•  Far from autonomous 

 

 

•  Performance far from adequate 
•  Write amplification 

•  Data 

•  Logs (binlog, redo log) 

•  Double write  

•  Repilca 

•  Negative correlation btw the foreground and
 background jobs, e.g. flush dirty pages,
 checkpoint, purge, backup … 

•  Low CPU utilization (<10% useful work) 
•  Synchronization cost 

•  Scheduling overhead 

•  Cache miss 

•  IO delay 
•  .... 

 



Cloud RDS service desired characteristics 
Ideal characteristics 

•  Multi-tenancy 
•  Effiicient resource sharing, e.g. CPU, memory,IO,network 
•  Resource consolidation, e.g. Light weight live migration of database tenants 

•  Elasticity 
•  Scale out to adapt to unpredicatable workload characteristics change 

•  Adequate SLA 
•  High availability SLA (24x7, RTO/RPO) 
•  Performance SLA(TPS/RT) 

•  Autonomous & self managed  
•  Ease management of large scale deployments 

•  Pay per use service 

 
 



 Emerging new architectures, e.g. aws aurora 

AWS aurora highlights 
•  Decoupled TC(transactional component)

 and DC(data component) 
•  Distributed fault tolerant purpose built

 database optimized cloud storage 
•  Performance boost 

•  Database is all about IO 
•  Network attached storage is all about packets

 per second 
•  High throughput processing is all about context

 switch 
 

Where did this architecture come from?
 Fusion innovation of  

•  Decoupled TC & DC, e.g. MS deuteronomy
 system 

•  Distributed cloud storage 
•  Open source RDS, e.g. MySQL 

 



Gaia Design principles 
•  Compatible with MySQL  

•  Explore the mature ecosystem 

•  Decoupling TC & DC for better
 resource utilization, elasticity & HA 
•  Offload log & data persistence to

 storage node 

•  Reduce network traffic 
•  Remove background data jobs 

•  Each layer can scale independently 

•  Improved RTO/RPO 

•  Multi-tenant distributed fault tolerant
 storage 
•  Distributed Storage to localize failure 

•  Leverage mature replication technology for
 per partition fault tolerance 

•  Database performance optimization  
•  Facilitate better processing pipeline for

 performance scalability 

•  Batching to reduce per item cost 

•  Adapt software design to HW change to
 harvest HW  acceleration    

•  Lock free data structure & algorithms 

•  RDMA 

•  NVMF  

•  NUMA optimization 

 



volume 

Gaia Architecture Overview 

SQL(RW) 

Cache 

TX Mgr SQL(RO) 

Cache 

Redo log 

Data volume volume 

NVMF 

Log 

NVMF NVMF 

Primary Replica 

Log 

Log Log Log 

Page cache Page cache Page cache 

Partition Node 

RDMA 

Baidu home grown  

shared storage pool 

 Architecture highlights 
•  Decoupled TC & DC 
•  Multi-tenant distributed fault

 tolerant storage 
•  Multiple replicas for read

 scaling & failover 
•  Performance boost by better

 resource utilization &
 harvesting HW acceleration 

Braft Replica 



Gaia computing layer: primary 

Primary 
•  Handle RW workload 

•  Focus on SQL execution, transaction & cache
 management 

•  Update cache ( no disk write) 

•  Generate log  and ship log to storage (RDMA) 

•  Move forward log durable point (VDL) upon Ack by
 storage 

•  Cache policy 
•  cache the latest version of the data page 

•  can’t evict page with page Lsn <= VDL  

•  Asynchronously send log to replicas 

•  Performance optimization (discussed later) 

Local  

Replica  

 Shared Storage 

log 

log 

data data 

SQL(RW) TX Mgr 

Cache Log 

Primary 



Gaia computing layer: replicas 
Replicas 
•  Support RO workload 

•  Support both local & remote replicas  
•  Local replica for read scaling & fast takeover 

•  Remote replica for DR & local read 

•  Enable planned & unplanned takeover/failover 

•  Update cache by applying redo log  
•  Fully parallel apply & apply to cache only 

•  MTR (mini-transaction, e.g. BTree  split & merge) atomic redo 

•  Light weighted mechanisms to order redo of dependent log records 

•  Support MVCC read (RR isolation) 
•  Obtain active transaction list from primary upon start up  

•  Maintain active transaction list while redo marches forward
 (transaction information embedded in redo log records) 

•  Readers create “read view” based on the active transaction list  

 

Primary 
Local  

Replica  

Remote  

Replica 

Shared storage storage 

log log data data data 



Gaia Storage 
•  Database is partitioned across a

 fleet of storage nodes  

•  Data volume allocated from cloud
 storage resource pool (Baidu
 home grown unified storage “Red
 Hare”)  
•  Better multi-tenancy 
•  Unified storage management 

•  HW acceleration to boost
 performance (user mode IO stack
 built with SPDK, NVMF, RDMA
 etc) 

•  Autonomous features 
•  Auto growth 
•  Self healing 

SPDK 

NVMF 

EBOF 

Red Hare 

Meta 
Cache 

Lock
 Free 

Small
 files POSIX 

BPFS (parallel shared fs) 

AI ,  DB 

Virtual Volume Resource
 MNG 

RDMA 

OS 

Local
 FS 



Gaia storage 
Storage services 
•  Persist log & materialize data (D within ‘ACID) 

•  Replicate log received from primary  

•  Replicate log through parallel raft (braft) and send Ack back to primary 

•  Apply committed log to materialize data pages 

•  Provide shared data access by primary & replicas 
•  Light weighted mechanism to maintain multiple page versions for MVCC  

•  Offload background jobs to storage 
•  Periodic back up data & log  

•  Coordinate with primary & replicas to purge data & log 

 



Gaia database performance optimization 
Optimized database performance  

•  SEDA like threading model 
•  Decoupled user thread from connection 

•  Dedicated log IO thread 

•  Asynchronous commit 

•  Scalable logging subsystem 
•  Lock Free WAL 

•  Flushing pipeline 

•  NUMA optimization 

•  Optimized memory management  
•  More to come … 

 
 
 

 

Buffer Mgr 
36% 

Latching 
19% 

Locking 
21% 

Logging 
17% 

Useful 
work 
7% 

Instruction count for OLTP workload 

“OLTP through the looking glass” sigmod08 



Gaia (primary server) thread model  
MySQL thread model is evolving, as
 of 5.6 it features 
•  Threaded server, 1 thread per

 connection 
•  1 page cleaner 
•  User thread does log IO 
•  User thread wait until log IO

 complete before commit could
 proceed, e.g. unlock, fix transaction
 state, respond to client … 

Pain points 
•  IO wait 
•  scheduling overhead, e.g.

 context switch 
•  Overcommitting resource, e.g.

 performance degrades
 severely when large number of
 threads dispatched (> 1000
 connections kills performance) 

•  … 



Digression into SEDA (for scalable web service) 

net dispatcher 

request 

request 

request 

work 

net 

Accept con 

Read packet 

Parse packet Cache lookup 

Handle cache miss 

Send response 

File IO 

Thread based concurrency 

SEDA (staged event driven arch) is much more scalable 
•  Jobs divides into stages 
•  Dynamic & bounded thread pool per stage 
•  Stage connected through task queues 
 

Thread pool 

Request queue 

… 



Query processing pipeline 

connect parse optimize Runtime Log IO commit 

Runtime commit parse optimize 

Gaia thread model 

Q: can we break it into more fine grained stages?  
 Starvros, H “ A case for staged databases”   

Agent pool Async committer 

Log IO 

Log writer 

connect 

connect 

connect 

Query processing stages 

Task queue 

Fill log buffer Post committer 



Gaia(primary server) thread model  
Gaia thread model 
•  Decoupled user threads from connections  

•  A pool of user threads (agents) serve all connections 
•  User threads pull tasks off the incoming task queue  
•  Dynamic pool size for better resource management 

•  Avoid over committing resource 
•  Dedicated Log IO thread, i.e. log writer 

•  Better IO batch 
•  Facilitate flushing pipeline 

•  Asynchronous commit by dedicated threads, i.e. asynchronous committer 
•  Hide sync IO delay 
•  Improve CPU utilization 

•  Multiple page cleaners for better parallelism 



Scalable logging 

agent 

Log Buffer 

Log.0 

  

Current Logging model (as of MySQL 5.6)   
•  Acquire log mutex  
•  Increment Log Sequence Number (LSN) 
•  Copy log records to log buffer 
•  Flush log to disk if sync IO is required 
•  Release log mutex 

Logging bottlenecks 

A. IO delay  
•  Need to ensure log gets durable on disk before

 commit 

B. Scheduling overhead  
•  User agent scheduled out while waiting for IO

 completion  

C. Log induced lock contention  
•  Locks held while waiting for IO completion

 increase chances of lock conflict 

D. Log buffer contention  
•  Synchronization cost for parallel access to

 log buffer 

 

 
 
 

 

 



Scalable logging 
Asynchronous commit (A,B) 
•  Instead of waiting for IO,  user agent

 could be freed up for more useful work 
•  User agent detach from the transaction

 to be committed, register the
 transaction to be committed (on a wait
 queue) and continue to work on other
 requests 

•  After log IO completion, log writer notify
 the asynchronous committer thread to
 continue processing the transaction to
 be committed and send response back
 to client afterwards 

 
 
 

 

 

Early lock release (C) 
•  DeWitt observed that a transaction could

 release its lock before its COMMIT log records
 gets written to disk as long as it does not
 return results to the client. 

•  Partially strict 2PL (Soisalon-Soininen, E.,
 Ylönen, T) propose that transaction releases
 locks as soon as its  commit request arrives.  

•  If a transaction aborts before its commit requests arrives,
 all accepted histories are recoverable and the recovery
 properties of strict 2PL are preserved 

•  If a transaction must be aborted after its commit request
 arrives (can only happen in case of rare system failures).
 These properties does not hold. Suggest to abort all active
 transactions for simplicity.  

 
 
 

 

 



Scalable logging 

Lock free WAL (D) 
•  User agents update an global atomic to generate

 LSN for its log records 

•  User agents copy log records into log buffer in
 parallel 

•  There might be holes in the log buffer as the agents
 make progress in parallel 

•  Need to track the order of log copy so that log writer
 can flush up to a LSN position up to which all prior
 log records (in LSN order) are all copied in 

•  A couple of solutions exist, e.g. use an auxiliary
 array to track the order by which the log records are
 copied into the log buffer 

 
 
 

 

 

Lrc = n 

startLsn endLsn 
Log buffer 

Lrc = n + 5 

RFL 

trackArray 

136 122 0 166 0 



Scalable logging 

NUMA optimization 
•  NUMA (non-uniform memory access)

 servers becomes more popular now    
•  Cores are grouped into socket with dedicated memory

 controller for fast access to local memory 

•  Inter-island memory access (through memory bus)  is
 much slower 

•   Software design need to adapt to NUMA by
 paying attention to where the memory
 resides 

 

 
 
 

 

 



Scalable logging 

Assembler 

User thread 

LSN atomic 

… 
NUMA socket 

Assembler 

… 

NUMA socket 

NUMA optimization 
•  Assign 1 log assembler thread per

 socket 

•  Assembler coalesce log record
 requests from the local user agents 

•  Update the LSN atomic on their behalf 

•  Issue the LSN range to each of the
 agent so that the agent can copy its
 log records into the log buffer
 accordingly 

•  User agent request LSN from the local
 assembler to reduce inter socket
 access overhead 

•  Full scalability requires more:
 distributed log buffer & multiple log
 stream 

 

  

 
 
 

•  。。。 

 

 
 



Future out look 

•  Better performance  
•  Where did time go ?  

•  Improve under current DBMS arch 
•  scalable logging 

•  Scalable lock manager & cache 
•  Latch free data structure &

 algorithms 

•  NUMA optimization, e.g. memory
 management 

•  A complete rewrite for 10x better
 TPS for next generation Gaia? 

•  Decoupled compute & data
 persitence 

•  MVCC + copy on write update 
•  Lock free record cache, e.g. lock

 free hash table, Bw-Tree index 
•  Flexible choice of storage, e.g.

 log structured store 
•  … 

 
  

Buffer Mgr 
36% 

Latching 
19% 

Locking 
21% 

Logging 
17% 

Useful 
work 
7% 

Instruction count for OLTP workload 

“OLTP through the looking glass” sigmod08 



Future out look 
•  More on elasticity 

•  Multiple writes 

•  HTAP capability & dynamic scale for analytics 

•  Database live migration & Instance consolidation  
•  90% of the DBMS  start small and never grow up 

•  Consolidate small instances onto fewer boxes for cost reduction 

•  Migrate out to more powerful nodes in case of workload rise  

•  Autonomous DBMS 
•  Auto resource management, e.g. self managed memory tuning 

•  AI for autonomous DB,  learned caching policy, learned stats, learned workload … 

•  Integrated AI services 
•  In-Database R/Python analytics run as store procedure 
•  ... 

 



Q&A 

Thank you! 



2019年1月12日 


