
How to support QoS in
distributed storage system

CEPH	QoS

Taewoong Kim
SW-Defined Storage Lab.

SK Telecom

5G

Flash	device
High	Performance,	Low	Latency,	SLA

UHD4
K

Scalable, Available,
Reliable, Unified Interface,
Open Platform

High Performance,
Low Latency

All-flash	Ceph !

SK Telecom and Ceph

Contribution : QoS,
Deduplication, etc.

Storage Solution for
- Private Cloud for Developers
- Virtual Desktop Infra 1

Why QoS?
□ Shared Storage : Virtualization, Consolidation

• Many tenants, even more VMs

ü Competition among clients for shared resource

ü Various workload & requirements

• Difficulty for Storage SLA

ü Not deterministic performance

• Situation	is	changing	every	time	rely	on	neighbors

□ SW-defined storages like CEPH provide many features but need
more background operations

• Background Operations

ü Replication

ü Recovering

ü Scrubbing

• Competition with foreground(client’s) operations

□ QoS schedules requests along administrator's pre-configured policies

Ceph Cluster

VM

Hypervisor

LIBRADOS

OSD #1

VMVM
VM

VM

Hypervisor

LIBRADOS

VMVM
VM

VM

Hypervisor

LIBRADOS

VMVM
VM

…OSD #2 OSD #N

VM

Hypervisor

LIBRADOS

VMVM
VM

Background
Operations

Client’s
Requests

2

• Source: Sage Weil's 'Ceph Project Update' in OpenStack Summit 2017 Boston

OSD

Shard #1

STORE

Messenger

ThreadThreadThread

Shard #N

ThreadThreadThread

…

PriorityQueue :
• Weighted
• Prioritized
+ mClockOpClass
+ mClockClient
+ mClockPool(WIP	by	SKT)

QoS Support on Ceph

3

□ Motivation

• Lack of existing research to support QoS (reservation + proportional share) for
storage

ü Support only simple proportional share

ü Support for other hardware devices (CPU, memory)

□ Key Idea

• Controls the number of I/O requests to be serviced using time tags

• Uses multiple real-time clocks & time tags for reservation, limit and
weight(proportion) based I/O scheduling

• Dynamic clock selection depends on clocks’ progress status

• Can be extended for supporting distributed storage : dmClock
ü Clients track progress of each storage server & send feedback to each server with I/O requests

if (smallest reservation tag < current time) // constraint-based
Schedule smallest eligible reservation tag

else // weight-based, reservations are met
Schedule smallest eligible shares tag
Subtract 1/rk from reservation tags of VM k.
A VM is eligible if (limit tag < current time)

What is mClock?

A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling throughput
variability for hypervisor IO scheduling. In OSDI, 2010

4

□ Development and stabilization of QoS algorithm
(https://github.com/ceph/dmclock)
• Improved QoS instability in high load situations

• Fix QoS error due to heap management bug
• Fix tag adjustment algorithm calibrating proportional share tags against real time
• Enable changing QoS parameters in run time
• Improved Client QoS service status monitoring and reporting algorithm
• Add anticipation mechanism to solve deceptive idleness problem

□ QoS simulator stabilization and convenience improvement
(https://github.com/ceph/dmclock)
• File-based simulator settings

• High performance setup and fixed simulation error reporting error

• Fixed server node selection error

□ Ceph Integration Work
• Delivery of mClock distribution parameters (delta, rho and phase) + Enabling client QoS tracker

(https://github.com/ceph/ceph/pull/16369)

• osd: use dmclock library client_info_f function dynamically (https://github.com/ceph/ceph/pull/17063)

• Pool based dmClock Queue (WIP) (https://github.com/ceph/ceph/pull/19340)

• Anticipation timeout Configuration (https://github.com/ceph/ceph/pull/18827)

QoS on SKT: Contributions

5

1. Each pool’s properties(MAX, MIN, Weight) are stored in the OSD Map

CLI Example: ceph osd pool set [pool ID] resv 4000.0 (IOPs)

2. Distribution status is monitored by “dmClock QoS Monitor” and status info is embedded in RADOS requests

3. Since each OSD has the latest OSD Map, it can know the QoS control of the pool corresponding to the received

request, and proceed QoS with Pool’s QoS properties & QoS status info

dmClcok QoS
Monitor

LIBRADOS

CRUSH
Algorithm

I/O δOSD#

Target
OSD

QoS Status Info
Pool#1

User 2
LIBRBD

dmClcok QoS
Monitor

LIBRADOS

CRUSH
Algorithm

I/O δOSD#

Target
OSD

QoS Status Info

User 1
LIBRBD

…
OSD #1

dmClock
QoS Scheduler

STORE

OSD
Map

POOL#0

Current Implemented Ceph QoS Pool Units

Pool’s Properties
{MIN,
MAX,Weight]

OSD #2

dmClock
QoS Scheduler

STORE

OSD
Map

OSD #3

dmClock
QoS Scheduler

STORE

OSD
Map

OSD #n

dmClock
QoS Scheduler

STORE

OSD
Map

6

Outstanding IO Based Throttling
Client Replica

OSD

Ceph

Device

PG

Messenger

OSD
dmClock

SSD or HDD

ObjectStore

PGBackend

OIO
Monitor

oio_throttle_get() oio_throttle_put()

Measure current load
on this range by
counting outstanding
IOs

Ø Throttler for QoS

ü Dispatch the number of I/O requests that is just

enough for exploiting the system.

ü The I/Os staying in the dmClock queue will be used

for more accurate scheduling later.

Ø OIO Monitor

ü Measure the average throughput.

ü Measure the average outstanding I/Os.

(OIOs from PG to disk)

ü Tracking the maximum throughput.

Ø Suspending dmClock scheduling

ü Just proportional scheduling will be throttled

– Null operation will be returned

ü However, reservation scheduling will be continue

because it’s the minimum requirement.

If OIOs are
enough

suspend()

resume()

If OIOs aren’t
enough

7

ü In one OSD, there will be dmClock queues depending on the number of shards (1-on-1)

ü As operations are distributed by the increased number of dmClock queues, the average queue depth in one

queue will be shorten

ü Not enough requests in the queue result in No rearrangement, No competition

ü Recommendation : Set the shard count to small number when using dmClock queue

2952 3060

9326 9487

15102

0

20000

Cli	0	(W:1) Cli	1	(W:1) Cli	2	(W:3) Cli	3	(W:3) Cli	4	(W:5)

Num of	Shards:1
15230 15468 16368 14801 15753

0

20000

Cli	0	(W:1) Cli	1	(W:1) Cli	2	(W:3) Cli	3	(W:3) Cli	4	(W:5)

Num of	Shards:10

…

OSD Shard	#0

ThreadThread

ThreadThread

Shard	#1

dmClock

dmClock

ThreadThread

Shard	#n

dmClcok

Client #0

Client #1

OSD Shard	#0

ThreadThread
dmClock

Client #0

Client #1

The stacking of OPs length is shortened

8

Queue Depth Problem

• Intel(R) Xeon(R) CPU E5-
2690 v3 @ 2.60GHz

• 256GB Memory
• 480GB SATA SSD x 8
• CentOS 7

10G
cluster

pubic

Ø Test env.

ü 5 Client Nodes

– Each client node uses single pool exclusively.

so, 5 pools total are used for this test.

ü 4 OSD Nodes

– 8 OSD daemons for single node.

– BlueStore.

– Single shard and 10 shard threads

ü Test Code

– https://github.com/ceph/ceph/pull/17450

ü fio options

– ioengine=rbd, 64 QD, 4 Jobs, 4KB rand write

OIO Based Throttler Test

9

Ø Plan
ü Weighting on request size or its type.

ü Improve the dmClock algorithm

ü Extend to serve QoS to an individual RBD

ü Add more metric. (Throughput, Latency, etc...)

ü Test dmClock QoS & OIO throttler in various environments

Plan and so on…

10

Q & A

11

